BROWSE

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Process

What is the 'Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Process '

The generalized autoregressive conditional heteroskedasticity (GARCH) process is an econometric term developed in 1982 by Robert F. Engle, an economist and 2003 winner of the Nobel Memorial Prize for Economics, to describe an approach to estimate volatility in financial markets. There are several forms of GARCH modeling. The GARCH process is often preferred by financial modeling professionals because it provides a more real-world context than other forms when trying to predict the prices and rates of financial instruments.

Explaining 'Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Process '

The general process for a GARCH model involves three steps. The first is to estimate a best-fitting autoregressive model. The second is to compute autocorrelations of the error term. The third is to test for significance. GARCH models are used by financial professionals in several areas including trading, investing, hedging and dealing. Two other widely used approaches to estimating and predicting financial volatility are the classic historical volatility (VolSD) method and the exponentially weighted moving average volatility (VolEWMA) method.

Example of GARCH Process

GARCH models help to describe financial markets in which volatility can change, becoming more volatile during periods of financial crises or world events and less volatile during periods of relative calm and steady economic growth. On a plot of returns, for example, stock returns may look relatively uniform for the years leading up to a financial crisis such as the one in 2007. In the time period following the onset of a crisis, however, returns may swing wildly from negative to positive territory. Moreover, the increased volatility may be predictive of volatility going forward. Volatility may then return to levels resembling that of pre-crisis levels or be more uniform going forward. A simple regression model does not account for this variation in volatility exhibited in financial markets and is not representative of the "black swan" events that occur more than one would predict.

GARCH Models Best for Asset Returns

GARCH processes differ from homoskedastic models, which assume constant volatility and are used in basic ordinary least squares (OLS) analysis. OLS aims to minimize the deviations between data points and a regression line to fit those points. With asset returns, volatility seems to vary during certain periods of time and depend on past variance, making a homoskedastic model not optimal.


Further Reading




Q&A About Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Process


What are some forms of the GARCH model?

There are several forms of the GARCH model, including EGARCH, GGARCH, and IGARCH.

How does the GARCH model differ from other models?

The GARCH model differs from other models because it accounts for variations in volatility exhibited in financial markets and can be used to predict future volatility.

What is a GARCH process?

A GARCH process is an econometric term developed in 1982 by Robert F. Engle to describe an approach to estimate volatility in financial markets.

Why would you prefer a GARCH model over another type of model?

You would prefer a GARCH model over another type of model because it provides more context when trying to predict prices and rates of financial instruments.